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Graphs
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Wu, et al. A comprehensive survey on graph neural networks. TNNLS 2020

Social network Recommendation System Molecular graphs

• Graphs model the interactions among various objects



End-to-End Graph Learning

• (Semi-)Supervised graph representation learning methods 
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Graph Neural Networks 

(GNNs)

Graph Transformer



Graph Neural Networks

• GNNs typically leverage message-passing framework
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Velickovic, et al. “Graph attention networks”. ICLR’18.

GCN GAT



Graph Transformers

• Transformers are widely used in graph learning
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Yun, et al. “Graph transformer networks.” NeurIPS’19.

Hu, et al. “Heterogeneous graph transformer.” WWW’20.
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• Performance highly depends on

Few-shot Learning Problems
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➢Abundant labeled data

➢Challenging or expensive to 

obtain labels, leads to

➢Rich Structure

➢Graph structure may be sparse, 

leads to

Label scarcity Structure scarcity



Few-shot Learning Methods

• Learn prior knowledge and adapt to downstream applications
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Few-shot Learning Methods

• Meta learning methods

• Pre-training methods

• Hybrid methods
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➢Derive prior knowledge from a series of “meta-training” task

➢Utilize unlabeled data to optimize self-supervised pretext tasks

➢Integrate both paradigms

➢Employ fine-tuning or parameter-efficient adaption
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Few-Shot Learning Problems on Graphs

• Label scarcity: lack of labeled data

• Structure scarcity: lack of structural connections
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Few-shot Learning on Graphs: Problems

Label Scarcity

Node-level 
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Fig. 3: Taxonomy of few-shot learning problems on graphs.

where f g(·;✓g) parameterized by ✓g is the representation

learning function, also known as the graph encoder , and d

is the dimension of the embedding vector hv .

Early graph representation learning approaches [7], [8], [9]

usually exploit the co-occurrence relationships or proximity

between nodes or substructures on graphs. More recently,

graph neural networks (GNNs) capitalize on a message-

passing framework, in which each node derives its represen-

tation by receiving and aggregating messages (i.e., features)

from neighboring nodes, thus capturing both structural and

semantic information. Multiple message-passing layers can be

stacked such that, in the l -th layer, we obtain the representation

h l
v 2 Rdl of node v as

h l
v = AGGR(h l− 1

v , { h l− 1
u : u 2 Nv } ;✓l

g), (2)

where Nv is the set of neighbors of v, ✓l
g denotes the learnable

parameters in the l -th layer, and AGGR(·) is a neighborhood

aggregation function [63], [11]. Note that for the first layer,

the input node embedding h0
v is typically initialized with the

node’s features from X V . For brevity, we denote the output

node representations from the last layer as hv .

Finally, the whole-graph representation can be obtained

through a readout operation:

hG = READOUT(hv : v 2 V ), (3)

which aggregates the node representations across the entire

graph, such as sum pooling or mean pooling.

I I I . FEW-SHOT LEARNING PROBLEMS ON GRAPHS

Few-shot learning on graphs has gained significant research

interest due to the frequent data scarcity issues in real-world

graphs. Based on the type of data scarcity, we categorize

few-shot learning problems on graphs into two groups: label

scarcity and structure scarcity. On one hand, similar to the

challenges faced in NLPand CV [50], [51], [52], label scarcity,

or the lack of labeled data, remains an important challenge in

few-shot learning on graphs. On the other hand, unlike text

and image data, graphs possess a non-euclidean topological

structure. As a result, structure scarcity in graphs emerges as

a second challenge that could adversely impact the learning

of effective representations. Researchers have studied various

problems related to the two challenges, and in this section,

we aim to categorize the literature based on the taxonomy

illustrated in Fig. 3.

A. Label Scarcity Problem on Graphs

As acquiring labels is usually difficult or costly, label

scarcity is a common problem in real-world applications.

However, the performance of supervised methods heavily

relies on a large amount of labeled data as supervision.

Consequently, traditional supervised methods perform poorly

when provided with limited labeled data, motivating few-shot

learning approaches to address the label scarcity problem on

graphs. We further categorize the label scarcity problem into

class-based and instance-based label scarcity based on their

respective class settings and target instances.

1) Class-based Label Scarcity: Let C denote the entire set

of classes on a graph, which consists of two subsets: the base

class set Cbase for model training, and the new class (also

called novel or unseen class) set Cnew for testing, such that

C = Cbase[ Cnew and Cbase\ Cnew = ; . Note that label scarcity

could happen in either subsets or both, as follows.

Label scarcity in new classes. In this setting, the goal is

to learn a prior using sufficient labeled data from the base

classes Cbase, and then transfer the prior knowledge to a novel

task involving the new classes Cnew. The labeled data for

the new classes form the support set, while the unlabeled

data from these new classes constitute the query set. When

the support set contains exactly K labeled samples for each

of the N classes from Cnew, this setup is called an N -way

K -shot problem. In particular, a few-shot problem refers to

the scenario where K is a small value. To address the few-

shot problem for the new classes, researchers have developed

meta-learning based approaches (see Sect. IV) to learn prior

knowledge from labeled data in the base classes, and further

transfer and adapt this knowledge to predict labels in the

new classes [64], [65], [66], [36], [67], [68], [69], [70], [44],

[49], [28]. However, the effectiveness of these approaches

still heavily depends on the availability of abundant labeled

data in a large number of base classes, which might also be

challenging to obtain in real-world applications.

Label scarcity in base classes. This setting occurs when

there is limited labeled data in Cbase, resulting in insufficient

prior knowledge to transfer and adapt to the new classes.

More commonly, when there is no labeled data for the base

classes or no base classes at all, meta-learning approaches

become inapplicable. Therefore, researchers have turned to

self-supervised methods to pre-train graph encoders without

requiring any labeled data or base classes [43], [29], [42], [71],

[39], [72], [30], [40], [73], [74], [75], [76], [77], [78], [79] (see

Sect. V-A). The pre-trained model is subsequently adapted to

novel downstream tasks involving new classes through fine-

tuning the pre-trained weights (see Sect. V-B). The fine-tuning

process typically requires a reasonable amount of labeled data

and is usually not considered as a few-shot problem.

Label scarcity in both classes. This is a combination of the

two settings above, where labeled data are limited in both

Cbase and Cnew. Similar to the label scarcity in base classes,

self-supervised methods are often leveraged to first pre-train a

graph encoder. However, with limited labeled data in the new

classes as well, vanilla fine-tuning can be challenging in the

few-shot context. Specifically, vanilla fine-tuning updates the



Label Scarcity Problems on Graphs

• Class-based Label Scarcity 
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The entire set of classes (𝐶) on a graph

o Base class set 𝐶𝑏𝑎𝑠𝑒 for model training

o New class set 𝐶𝑛𝑒𝑤 for testing

o 𝐶 = 𝐶𝑏𝑎𝑠𝑒 ∪ 𝐶𝑛𝑒𝑤

o 𝐶𝑏𝑎𝑠𝑒 ∩ 𝐶𝑛𝑒𝑤= ∅

Label scarcity could happen in either subsets or both 



Label Scarcity Problems on Graphs

• Class-based Label Scarcity 
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➢Label scarcity in new classes 𝐶𝑛𝑒𝑤 

Labeled base 

classes 𝐶𝑏𝑎𝑠𝑒
New classes 𝐶𝑛𝑒𝑤  

Transfer

prior knowledge

Support set: labeled data from 𝐶𝑛𝑒𝑤 

Query set: unlabeled data from 𝐶𝑛𝑒𝑤 

Meta-learning based approaches 

Heavily rely on abundant labeled data in a large number of base classes! 



Label Scarcity Problems on Graphs

• Class-based Label Scarcity 
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Unlabeled/No 

base classes 𝐶𝑏𝑎𝑠𝑒  
New classes 𝐶𝑛𝑒𝑤

Pre-training

& Adaptation

➢Label scarcity in base classes 𝐶𝑏𝑎𝑠𝑒 

✗ Meta-learning based methods

✓ Self-supervised methods

❏ Pre-train graph encoders on 𝐶𝑏𝑎𝑠𝑒 

❏ Fine-tuning on novel tasks



Label Scarcity Problems on Graphs

• Class-based Label Scarcity 
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➢Label scarcity in both classes: labeled data are limited in both 𝐶𝑏𝑎𝑠𝑒 and 𝐶𝑛𝑒𝑤 

Self-supervised methods

❏ Pre-train graph encoders

❏ Fine-tuning on novel downstream tasks: parameter-efficient adaptation



Label Scarcity Problems on Graphs

• Instance-based Label Scarcity 
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➢Node-level label scarcity
Social network

Recommender system

➢Edge-level label scarcity

➢Graph-level label scarcity

Molecular graph



Label Scarcity Problems on Graphs

• Instance-based Label Scarcity 
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Recommender system Molecular graph

➢Node-level label scarcity

Academic network Social network Traffic Flow



Label Scarcity Problems on Graphs

• Instance-based Label Scarcity 
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Baek, et  al. “Learning to extrapolate knowledge: Transductive few-shot out-of-graph link prediction .” NeurIPS’20

Gao, et al. “Protein multimer  structure prediction via prompt learning.” ICLR’24

Zhu, et al. “Few-shot link prediction for event-based social networks via meta- learning. ” DASFAA’23

E-commerce 

➢Edge-level label scarcity

Drug-drug interaction 

[Image from Microsoft]

Knowledge graph

Published as aconference paper at ICLR 2024

PROTEIN MULTIMER STRUCTURE PREDICTION VIA

PROMPT LEARNING

Ziqi Gao1,2, Xiangguo Sun3, Zij ing Liu4, Yu Li4, Hong Cheng3, Jia Li1,2⇤

1Hong Kong University of Science and Technology (Guangzhou)
2Hong Kong University of Science and Technology
3The Chinese University of Hong Kong
4IDEA Research, International Digital Economy Academy

ABSTRACT

Understanding the 3D structures of protein multimers is crucial, as they play a
vital role in regulating various cellular processes. It has been empirically con-
firmed that the multimer structure prediction (MSP) can be well handled in a
step-wiseassembly fashion using provided dimer structuresand predicted protein-
protein interactions (PPIs). However, due to the biological gap in the forma-
tion of dimers and larger multimers, directly applying PPI prediction techniques
can often cause a poor generalization to the MSP task. To address this chal-
lenge, we aim to extend the PPI knowledge to multimers of different scales (i.e.,
chain numbers). Specifically, we propose PROM PTM SP, a pre-training and
Prompt tuning framework for Multimer Structure Prediction. First, we tailor
the source and target tasks for effective PPI knowledge learning and efficient
inference, respectively. We design PPI-inspired prompt learning to narrow the
gaps of two task formats and generalize the PPI knowledge to multimers of dif-
ferent scales. We provide a meta-learning strategy to learn a reliable initial-
ization of the prompt model, enabling our prompting framework to effectively
adapt to limited data for large-scale multimers. Empirically, we achieve both
significant accuracy (RMSD and TM-Score) and efficiency improvements com-
pared to advanced MSP models. The code, data and checkpoints are released at
ht t ps: / / gi t hub. com/ zqgao22/ Pr ompt MSP .

1 INTRODUCTION

Recent advances in deep learning havedriven thedevelopment of AlphaFold 2 (AF2) (Jumper et al.,
2021), a groundbreaking method for predicting protein 3D structures. With minor modifications,
AF2 can beextended to AlphaFold-Multimer (AFM) (Evans et al., 2021) to predict the3D structure
of multimers (i.e., proteins that consist of multiple chains), which is fundamental in understanding
molecular functions and cellular signaling of many biological processes. AFM has been verified to
accurately predict the structures of multimers with small scales (i.e., chain numbers). However, its
performance rapidly declines as the scale increases.
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Figure 1: (A). Step-wise assembly for MSP.
(B). Motivation for extending I-PPI to C-PPI.

For multimer structure prediction (MSP), another re-
search line(Esquivel-Rodrı́guez et al., 2012; Aderinwale
et al., 2022; Inbar et al., 2005; Bryant et al., 2022) fol-
lows the idea of step-wise assembly (Figure 1A), where
the assembly action indicates the protein-protein inter-
action (PPI). It sequentially expands the assembly size
by adding a chain with the highest docking probability.
The advantage of this step-wise assembly is that it can
effectively handle multimers with large scales by enjoy-
ing the breakthrough in dimer structure prediction methods (Ganea et al., 2021; Wang et al., 2023;
Ketata et al., 2023; Ghani et al., 2021; Luo et al., 2023; Chu et al., 2023; Evans et al., 2021).

⇤Correspondence to: JiaLi (j i al ee@ust . hk ).
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Label Scarcity Problems on Graphs
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• Instance-based Label Scarcity 

Bai, et al. “Unsupervised Inductive Graph-Level Representation Learning via Graph-Graph Proximity.” IJCAI’19

Chauhan, et  al. “Few-shot learning on graphs via super-classes based on graph spectral measures.” ICLR’20

Zhu, et al. “Dual-view Molecular Pre-training.” KDD’23

Zhang, et al. “Protein Representation Learning by Geometric Structure Pretraining. ” ICLR’23

➢Graph-level label scarcity

Social Network Molecular Graph  Protein Graph 

Property prediction Property prediction Reddit thread graph classification

Predicting properties/categories for subgraphs/whole graphs with limited labeled data



Structure Scarcity Problems on Graphs

• Long-tailed distribution
• learn from an imbalanced distribution : a large number of nodes have few connections 

• Cold-start
• Learn representations for new nodes with no or very few connections 

22



Structure Scarcity Problems on Graphs

• Long-tailed distribution 

23

Liu, et al. “A Survey of Imbalanced Learning on Graphs: Problems, Techniques, and Future Directions. ” arXiv’23

Tang, et al. “Investigating and Mitigating Degree-Related Biases in Graph Convolutional Networks.” CIKM’20



Structure Scarcity Problems on Graphs

• Cold-start learning: new nodes with few connections

24

Pan, et al. “Warm Up Cold-start Advertisements- Improving CTR Predictions via Learning to Learn ID Embeddings.” SIGIR’19

Hao, et al. “Pre-Training Graph Neural Networks for Cold-Start Users and Items Representation.” WSDM’21

5% of ads accounted for over 80% of samples; 

95% ads had a very small amount of data. 

Classic GNNs may have limited effectiveness 

in addressing cold-start problems



Overall Taxonomy

• Taxonomy of few-shot learning techniques on graphs
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Few-shot Learning on Graphs: Techniques

Meta-Learning Approaches

Structure-based Enhancement

Node-level enhancement

Edge-level enhancement
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Prompt tuning on graphs

Parameter-effeicient fine-tuning
Hybrid Approaches

Integration with LLMs

Graph-wise adaptation

Task-wise adaptation

Fig. 4: Taxonomy of few-shot learning techniques on graphs.

the context of graphs, only a small number of nodes, referred

to as head nodes, are incident to a large number of edges

(i.e., high-degree), while the majority of nodes, termed tail

nodes, have very few edges (i.e., low-degree) [132]. Thus, tail

nodes are surrounded by a small neighborhood with a scarcity

of neighbor information, limiting effective learning of their

representations. Formally, given a graph G = (V, E ), the set

of head nodes is denoted by Vhead, and the set of tail nodes

by Vtail , such that Vhead [ Vtail = V and Vhead \ Vtail = ; .

The separation of the two subsets is often determined by a

predefined threshold on the node degree [124], [132].

Long-tailed distributions are common in real-world net-

works. For example, in academic networks, a small number of

authors are highly prolific and linked to many papers, while

the majority have only a few connections to papers [123],

[124], [125], [126], [128], [129]. In social networks, a few

celebrities have a vast number of followers, while most users

have far fewer [123], [130], [124], [131], [132], [133], [126],

[127], [128]. In e-commerce and recommendation systems

[133], [126], [134], [128], [129], the disparity in the number

of connections across users or items is also evident. The

challenge of long-tailed distributions has also been studied in

other graph-centric applications, ranging from protein-protein

interaction [123] to air traffic control [130].

Cold-star t learning. The cold-start problem in graphs arises

when making predictions for new nodes, which often have

no or very few existing edges. Conventionally, models are

trained on existing graph structures where nodes have suffi-

cient connections to other nodes, leading to poor performance

for new nodes with few connections. This problem is prevalent

in social networks and e-commerce systems, where new nodes

are continually added. Specifically, in social networks, new

users often begin with few interactions with existing users or

content, motivating various solutions to the cold-start problem

[135], [136], [137], [25], [138], [139]. Similarly, on commerce

platforms, new users or items often lack interactions with other

users or items during their initial phase [135], [25], [140].
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Fig. 5: An illustration of meta-learning on graph.

IV. META-LEARNING TECHNIQUES ON GRAPHS

Meta-learning is an important family of few-shot learning

techniques, represented in the first branch of our taxonomy

in Fig. 4. Prevailing episodic meta-learning methods [142],

[32], [31] are designed to learn a prior from base classes,

which is transferable to new classes in downstream tasks.

These methods typically assume an abundance of labeled data

across a large number of base classes, while the downstream

new classes have few labeled samples, i.e., the setting of label

scarcity in new classes as discussed in Sect. III-A.

In this section, we first review standard meta-learning tech-

niques. We then categorize and discuss literature that enhances

the standard methods for few-shot learning on graphs.

A. Standard Meta-learning Techniques

In standard episodic meta-learning methods, such as Match-

ing Networks (MN) [142], Model-Agnostic Meta-Learning

(MAML) [31] and Prototpyical Networks (Protonets) [32],

we first construct a series of meta-training tasks from the

base classes to learn prior knowledge, which is then adapted

to downstream few-shot meta-testing tasks involving the new

classes. The concept is illustrated in Fig. 5, using few-shot

node classification on a graph as an example. In this scenario,

meta-training tasks are constructed using base classes with

ample labels, whereas a meta-testing task involves new classes

with only few-shot labels. Each task comprises a support set

and a query set, which function as training and testing data,

respectively, within each task [31]. The support set is always

labeled, whereas the query set is only labeled in meta-training

but is unlabeled for inference and prediction in meta-testing.

The prior is optimized on the meta-training tasks to enable

rapid, lightweight adaptation using the support set that can

minimize the loss on the query set. Hence, for the prior to be

transferable to meta-testing tasks, such meta-learners assume

that the meta-training and -testing tasks are sampled from an

i.i.d. task distribution.

Formally, in the meta-training phase, consider a set of

meta-training tasks Ttrain = { T 1
train, T 2

train, . . . , T n
train} . Each task

T i
train = (Si

train, Q i
train) 2 Ttrain consists of asupport set Si

train and

a query set Qi
train. Subsequently, the process of meta-learning,

also called learning-to-learn [31], involves optimizing the loss

over the set of meta-training tasks T i
train, as follows.

! ⇤= argmin
!

ET i
train

2 Ttrain
L (T i

train; ! ), (4)
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Meta-learning techniques on graphs 

• Standard meta-learning techniques 

27

C. Finn et al. “Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks.”  ICML 2017.
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Meta-learning techniques on graphs 

• Standard meta-learning on graph 
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the context of graphs, only a small number of nodes, referred

to as head nodes, are incident to a large number of edges

(i.e., high-degree), while the majority of nodes, termed tail

nodes, have very few edges (i.e., low-degree) [132]. Thus, tail

nodes are surrounded by a small neighborhood with a scarcity

of neighbor information, limiting effective learning of their

representations. Formally, given a graph G = (V, E ), the set

of head nodes is denoted by Vhead, and the set of tail nodes

by Vtail , such that Vhead [ Vtail = V and Vhead \ Vtail = ; .

The separation of the two subsets is often determined by a

predefined threshold on the node degree [124], [132].

Long-tailed distributions are common in real-world net-

works. For example, in academic networks, a small number of

authors are highly prolific and linked to many papers, while

the majority have only a few connections to papers [123],

[124], [125], [126], [128], [129]. In social networks, a few

celebrities have a vast number of followers, while most users

have far fewer [123], [130], [124], [131], [132], [133], [126],

[127], [128]. In e-commerce and recommendation systems

[133], [126], [134], [128], [129], the disparity in the number

of connections across users or items is also evident. The

challenge of long-tailed distributions has also been studied in

other graph-centric applications, ranging from protein-protein

interaction [123] to air traffic control [130].

Cold-star t learning. The cold-start problem in graphs arises

when making predictions for new nodes, which often have

no or very few existing edges. Conventionally, models are

trained on existing graph structures where nodes have suffi-

cient connections to other nodes, leading to poor performance

for new nodes with few connections. This problem is prevalent

in social networks and e-commerce systems, where new nodes

are continually added. Specifically, in social networks, new

users often begin with few interactions with existing users or

content, motivating various solutions to the cold-start problem

[135], [136], [137], [25], [138], [139]. Similarly, on commerce

platforms, new users or items often lack interactions with other

users or items during their initial phase [135], [25], [140].
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IV. META-LEARNING TECHNIQUES ON GRAPHS

Meta-learning is an important family of few-shot learning

techniques, represented in the first branch of our taxonomy

in Fig. 4. Prevailing episodic meta-learning methods [142],

[32], [31] are designed to learn a prior from base classes,

which is transferable to new classes in downstream tasks.

These methods typically assume an abundance of labeled data

across a large number of base classes, while the downstream

new classes have few labeled samples, i.e., the setting of label

scarcity in new classes as discussed in Sect. III-A.

In this section, we first review standard meta-learning tech-

niques. We then categorize and discuss literature that enhances

the standard methods for few-shot learning on graphs.

A. Standard Meta-learning Techniques

In standard episodic meta-learning methods, such as Match-

ing Networks (MN) [142], Model-Agnostic Meta-Learning

(MAML) [31] and Prototpyical Networks (Protonets) [32],

we first construct a series of meta-training tasks from the

base classes to learn prior knowledge, which is then adapted

to downstream few-shot meta-testing tasks involving the new

classes. The concept is illustrated in Fig. 5, using few-shot

node classification on a graph as an example. In this scenario,

meta-training tasks are constructed using base classes with

ample labels, whereas a meta-testing task involves new classes

with only few-shot labels. Each task comprises a support set

and a query set, which function as training and testing data,

respectively, within each task [31]. The support set is always

labeled, whereas the query set is only labeled in meta-training

but is unlabeled for inference and prediction in meta-testing.

The prior is optimized on the meta-training tasks to enable

rapid, lightweight adaptation using the support set that can

minimize the loss on the query set. Hence, for the prior to be

transferable to meta-testing tasks, such meta-learners assume

that the meta-training and -testing tasks are sampled from an

i.i.d. task distribution.

Formally, in the meta-training phase, consider a set of

meta-training tasks Ttrain = { T 1
train, T 2

train, . . . , T n
train} . Each task

T i
train = (Si

train, Qi
train) 2 Ttrain consists of asupport set Si

train and

a query set Qi
train. Subsequently, the process of meta-learning,

also called learning-to-learn [31], involves optimizing the loss

over the set of meta-training tasks T i
train, as follows.

! ⇤= argmin
!

ET i
train2 Ttrain

L (T i
train; ! ), (4)
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the context of graphs, only a small number of nodes, referred

to as head nodes, are incident to a large number of edges

(i.e., high-degree), while the majority of nodes, termed tail

nodes, have very few edges (i.e., low-degree) [132]. Thus, tail

nodes are surrounded by a small neighborhood with a scarcity

of neighbor information, limiting effective learning of their

representations. Formally, given a graph G = (V, E ), the set

of head nodes is denoted by Vhead, and the set of tail nodes

by Vtail , such that Vhead [ Vtail = V and Vhead \ Vtail = ; .

The separation of the two subsets is often determined by a

predefined threshold on the node degree [124], [132].

Long-tailed distributions are common in real-world net-

works. For example, in academic networks, a small number of

authors are highly prolific and linked to many papers, while

the majority have only a few connections to papers [123],

[124], [125], [126], [128], [129]. In social networks, a few

celebrities have a vast number of followers, while most users

have far fewer [123], [130], [124], [131], [132], [133], [126],

[127], [128]. In e-commerce and recommendation systems

[133], [126], [134], [128], [129], the disparity in the number

of connections across users or items is also evident. The

challenge of long-tailed distributions has also been studied in

other graph-centric applications, ranging from protein-protein

interaction [123] to air traffic control [130].

Cold-star t learning. The cold-start problem in graphs arises

when making predictions for new nodes, which often have

no or very few existing edges. Conventionally, models are

trained on existing graph structures where nodes have suffi-

cient connections to other nodes, leading to poor performance

for new nodes with few connections. This problem is prevalent

in social networks and e-commerce systems, where new nodes

are continually added. Specifically, in social networks, new

users often begin with few interactions with existing users or

content, motivating various solutions to the cold-start problem

[135], [136], [137], [25], [138], [139]. Similarly, on commerce

platforms, new users or items often lack interactions with other

users or items during their initial phase [135], [25], [140].
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IV. META-LEARNING TECHNIQUES ON GRAPHS

Meta-learning is an important family of few-shot learning

techniques, represented in the first branch of our taxonomy

in Fig. 4. Prevailing episodic meta-learning methods [142],

[32], [31] are designed to learn a prior from base classes,

which is transferable to new classes in downstream tasks.

These methods typically assume an abundance of labeled data

across a large number of base classes, while the downstream

new classes have few labeled samples, i.e., the setting of label

scarcity in new classes as discussed in Sect. III-A.

In this section, we first review standard meta-learning tech-

niques. We then categorize and discuss literature that enhances

the standard methods for few-shot learning on graphs.

A. Standard Meta-learning Techniques

In standard episodic meta-learning methods, such as Match-

ing Networks (MN) [142], Model-Agnostic Meta-Learning

(MAML) [31] and Prototpyical Networks (Protonets) [32],

we first construct a series of meta-training tasks from the

base classes to learn prior knowledge, which is then adapted

to downstream few-shot meta-testing tasks involving the new

classes. The concept is illustrated in Fig. 5, using few-shot

node classification on a graph as an example. In this scenario,

meta-training tasks are constructed using base classes with

ample labels, whereas a meta-testing task involves new classes

with only few-shot labels. Each task comprises a support set

and a query set, which function as training and testing data,

respectively, within each task [31]. The support set is always

labeled, whereas the query set is only labeled in meta-training

but is unlabeled for inference and prediction in meta-testing.

The prior is optimized on the meta-training tasks to enable

rapid, lightweight adaptation using the support set that can

minimize the loss on the query set. Hence, for the prior to be

transferable to meta-testing tasks, such meta-learners assume

that the meta-training and -testing tasks are sampled from an

i.i.d. task distribution.

Formally, in the meta-training phase, consider a set of

meta-training tasks Ttrain = { T 1
train, T 2

train, . . . , T n
train} . Each task

T i
train = (Si

train, Q i
train) 2 Ttrain consists of asupport set Si

train and

a query set Qi
train. Subsequently, the process of meta-learning,

also called learning-to-learn [31], involves optimizing the loss

over the set of meta-training tasks T i
train, as follows.

! ⇤= argmin
!

ET i
train

2 Ttrain
L (T i

train; ! ), (4)



Structure-based Enhancement on Graphs 

• Node-level enhancement: GPN

Differentiating node weights in a task to reflect their varying structural importance 
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K. Ding, et al “Graph prototypical networks for few-shot learning on attributed networks.” CIKM’20
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Figure 2: (Lef t) Episodic training on attr ibuted networks. In each episode, we create a semi-supervised few-shot node classi -

cation task by random sampling; (Right) The architecture of the proposed framework Graph Prototypical Networks (GPN).

The whole training process is based on a set of ) meta-training

tasks TCA08= = {TC})
C=1. The model is trained to minimize the loss

of its predictions for the query set QC in each meta-training task

TC, and goes episode by episode until convergence. In this way,

the model gradually collects meta-knowledge across those meta-

training tasksand then can benaturally generalized to themeta-test

task TC4BC= {S, Q} with unseen classes⇠C4BC.

Di erent from conventional episodic training that constructs a

pool of supervised meta-training tasks [12], in each episode, we

sample # -way  -shot labeled nodesand mask the rest asunlabeled

nodes. In this way, we can create a semi-supervised meta-training

task with the partially labeled attributed network. By considering

both labeled and unlabeled data and their dependencies, we are

able to learn more expressive node representations for few-shot

node classi cation during the meta-learning process.

4.2 Network Representation Learning

In order to learn expressive node representations from an attrib-

uted network, we develop a network encoder to capture the data

heterogeneity. Speci cally, the network encoder possesses a GNN

backbone, which converts each node to a low-dimensional latent

representation. In general, GNNs follow theneighborhood aggrega-

tion scheme, and compute the node representations by recursively

aggregating and compressing node features from local neighbor-

hoods. Brie y, a GNN layer can be de ned as:

h;
8 = C ;

⇣
h;−1

8 ,h;
N8

⌘
,

h;
N8

= A ;
⇣
{h;−1

9 |892 N8 [ E8}
⌘
,

(2)

where h;
8 is the node representation of node8at layer ; and N8 is

the set of neighboring nodes of E8. C and A are

two key functions of GNNs and have a series of possible implemen-

tations [15, 17, 39].

By stacking multiple GNN layers in the network encoder, the

learned node representations are able to capture the long-range

node dependencies in the network:

H1 = GNN1(A,X),

. . .

Z = GNN! (A,H! −1),

(3)

where Z is the learned node representations from the network en-

coder. For simplicity, wewill use 5) (·) to denote thenetwork encoder

with ! GNN layers.

Prototype Computation. With the learned node representations

from the network encoder, next, we aim to compute the representa-

tion of each class with the labeled nodes from the support set. We

follow the idea of Prototypical Networks [35], which encourages

nodes of each class cluster around a speci c prototype representa-

tion. Formally, the class prototypes can be computed by:

p2 = P
⇣
{z8|882 S2}

⌘
, (4)

where S2 denotes the set of labeled examples from class 2 and

P is the prototype computation function. For instance, in the

vanilla Prototypical Networks [35], the prototype of each class is

computed by taking the average of all embedded nodes belonging

to that class:

p2 =
1

|S2|

’

82S2

z8. (5)

4.3 Node Importance Valuation

Despite its simpleness, directly taking the mean vectors of the em-

bedded support instances asprototypes may not provide promising

results for our problem. It not only neglects the fact that each

node has a di erent signi cance in a network, but also makes the

FSL model highly noise-sensitive since labeled data is severely

limited [45]. Therefore, re ning those class prototypes becomes

especially essential for building a robust and e ective FSL model.

To identify the informativeness of each labeled node, we adopt

a view that the importance of a node is highly correlated with

its neighbors’ importance [27]. Accordingly, we design a GNN-

based nodevaluator 6q (·) (as shown in Figure 3) to estimate node

importance scores through a scoreaggregation layer, which can be

de ned as follows:

B;
8 =

’

92N8[ E8

U;
89B

;−1
9 , (6)

where B;
8 is the importance score of node E8 in the ;-th layer (; =

1, . . . , ! ). U;
89 is the attention weight between nodesE8 and E9, we

Node Valuator: Estimate node importance scores



Structure-based Enhancement on Graphs 

• Node-level enhancement: FAAN
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J. Sheng, et al “Adaptive attentional network for few-shot knowledge graph completion.” EMNLP’20
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Figure 2: The framework of FAAN: (a) Adaptiveneighbor encoder for entities; (b) Transformer encoder for entity

pairs; (c) Adaptivematching processor to match K -shot references and the query.

4.1 Adaptive Neighbor Encoder for Entities

Previousworkson embeddings (Schlichtkrull et al.,

2018; Shang et al., 2019) have demonstrated that

explicitly modeling graph contexts benefits KG

completion. Recent few-shot relational learn-

ing methods encode one-hop neighbors to en-

hance entity embeddings with equal or fixed at-

tentions (Xiong et al., 2018; Zhang et al., 2020),

ignoring the dynamic properties of entities. To

tackle this issue, we devise an adaptive neighbor

encoder for entities discerning their entity roles

associated with task relations. Specifically, we

are given a triple of a few-shot task for relation

r , e.g., (h, r, t). Take the head entity h as a

target, and we denote its one-hop neighbors as

Nh = { (rnbr , enbr )|(h, r nbr , enbr ) 2 G0} . Here,

G0 is the background KG; r nbr , enbr represent the

neighboring relation and entity of h respectively.

The aim of the proposed neighbor encoder is to

obtain varied entity representations with Nh to ex-

hibit their different roleswhen involved in different

task relations. Figure 2(a) gives the details of the

adaptiveneighbor encoder, where CeoOf is the few-

shot task relation and the other relations such as

Mar r yTo, Pr oxyFor and Wor ksWi t h are the neigh-

boring relations of the head entity Bi l l Gat es .

As claimed in the introduction, the role of en-

tity h can be varied with respect to the few-shot

task relation r . However, few-shot task relations

are always hard to obtain effective representa-

tions by existing embedding models that always

require sufficient training data for the relations. In-

spired by TransE (Bordes et al., 2013), wemodel

the task relation embedding r as a translation be-

tween the entity embeddings h and t , i.e., we want

h + r ⇡ t when the triple holds. The intuition

here originates from linguistic regularities such as

I t al y−Rome = Fr ance− Par i s , and such analogy

holds because of the certain relation Capi t al Of .

Under the translation assumption, we can obtain

the embedding of few-shot task relation r given its

entity pair (h, t):

r = t − h (1)

where r , t , h 2 Rd; t and h are embeddings pre-

trained on G0with current embedding model such

as TransE; d denotes the pre-trained embedding

dimension. Actually, the translation mechanism

is not the only way to model the task relations.

We leave the investigation of other KG embedding

methods (Trouillon et al., 2016; Sun et al., 2019)

to future work.

Intuitively, relations can reflect roles of an entity.

As shown in Figure 1(a), the task relation CeoOf

may be more related to Wor kWi t h than Mar r yTo,

since the first two exhibit a business role. That is

to say, we can discern the roles of h according to

the relevance between the task relation r and the

neighboring relation r nbr . Hence, wefirst definea

metric function  to calculate their relevance score

by abilinear dot product:

 (r, r nbr ) = r > W r nbr + b (2)

where r and r nbr can beobtained by Eq. (1); both

W 2 Rd⇥d and b 2 R are learnable parameters.

Then, we obtain a role-aware neighbor embedding

cnbr for h by considering its diverse roles:

cnbr =
X

en br 2 N h

↵nbr enbr (3)

↵nbr =
exp( (r, r nbr ))

P
r n br 02 N h

exp( (r, rnbr 0))
(4)

Few-shot Knowledge Graph (KG) completion

Adaptive attention: Learn adaptive entity and reference representations.



Structure-based Enhancement on Graphs 

• Edge-level enhancement: HMNet
➢Leverage auxiliary information associated with edges 

32

S. Xiao, et al. “HMNet- Hybrid Matching Network for Few-Shot Link Prediction.” DASFAA’21

Matching networks for both entities and relations 

Use the convolution operation to iteratively 

update feature weights 



Structure-based Enhancement on Graphs 

• Edge-level enhancement: RALE
➢Leverage paths to capture long-range dependencies between distant node

33

Z. Liu, et al “Relative and Absolute Location Embedding for Few-Shot Node Classification on Graph.” AAAI’21

▪ Paths between each query node and the support nodes: Task-level dependencies

▪ Paths between each query node and the hub nodes: Graph-level dependencies

▪ Hubs: nodes with high network centrality scores such as degree or PageRank

consider paths passing through hubs



Structure-based Enhancement on Graphs 

• Edge-level enhancement: MetaHIN

34

Y. Lu, et al “Meta-learning on Heterogeneous Information Networks for Cold-start Recommendation .” KDD’20

▪ HIN: nodes and edges in a graph belong to different types

▪ Meta-paths: heterogeneous semantic relationships (UM, UMAM, UMDM, UMUM) 



Structure-based Enhancement on Graphs 

• Subgraph-level enhancement: G-Meta
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K. Huang, et al “Graph Meta Learning via Local Subgraphs.” NeurIPS’20
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Figure 2: (1) We first construct a batch of m meta-training tasks and extract local subgraphs on the fly for
nodes in the meta-tasks. For each task Ti , (2) subgraphs from the support set are mini-batched and are fed into
a GNN parameterized by ✓. (3) The support set embeddings using the centroid nodes are generated, and (4)
the prototypes are computed from the support centroid embeddings. Then, (5) the support set loss L support is
computed, and (6) back-propagates to update theGNN parameter. (7) T

query
i subgraphs then feed into the updated

GNN to (8) generate query centroid embeddings. (9) Using the support prototypes and the query embeddings,
the query loss L i

query for task Ti is computed. Steps (2-9) are repeated for ⌘update steps. The same process
repeats for the other m sampled tasks, starting from the same GNN f ✓. (10) The last update step’s query loss
from all the tasks are summed up and used to update✓. Then, another batch of tasks are sampled, and step
(1-10) are repeated. Then, for meta-testing tasks, steps (1-9) are repeated with the GNN using the meta-learned
parameter ✓⇤, which enables generalization over unseen tasks. See Algorithm 1 (Appendix E).

local subgraphs, as is evidenced by the connection to the Weisfeiler-Lehman test [54, 60]. Hence,
subgraphs enable G-M ETA to capture structrual node information. (2) FeaturesFeaturesFeaturesFeaturesFeaturesFeaturesFeaturesFeaturesFeaturesFeaturesFeaturesFeaturesFeaturesFeaturesFeaturesFeaturesFeatures. Local subgraphs
preserve useful information, as indicated by the theorems above. (3) LabelsLabelsLabelsLabelsLabelsLabelsLabelsLabelsLabelsLabelsLabelsLabelsLabelsLabelsLabelsLabelsLabels. When only ahandful
of nodes are labeled, it is challenging to efficiently propagate the labels through the entire graph
[64, 23]. Metric-learning methods [37] learn a task-specific metric to classify query set data using the
closest point from thesupport set. It hasbeen proved asan effective inductivebias [37, 42]. Equipped
with subgraph representations that capture both structure and feature information, G-M ETA uses
metric-learning by comparing thequery subgraph embedding to the support subgraph embedding. As
such, it circumvents the problem of having too little label information for effective propagation.

5 G-M ETA: Meta Learning via Local Subgraphs

G-META (Figure 2) is an approach for meta-learning on graphs. Building on theoretical motivation
from Section 4, G-META first constructs local subgraphs. It then uses a GNN encoder to generate
embeddings for subgraphs. Finally, it uses prototypical loss for inductive bias and MAML for
knowledge transfer across graphs and labels. The overview is in Algorithm 1 (Appendix E).

Neural encoding of subgraphs. In each meta-task, wefirst construct asubgraph Su for each node
u. While we use h-hops neighbors to construct subgraphs, other subgraph extraction algorithms,
e.g., [6, 11] can be considered. We then feed each subgraph Su into a h-layer GNN to obtain an
embedding for every node in the subgraph. Here, h is set to the size of subgraph neighborhood. The

5

▪ Generate class prototypes from subgraph

▪ Expand query node to its subgraph



Structure-based Enhancement on Graphs 

• Subgraph-level enhancement: GEN

36

J. Baek, et al “Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph Link Prediction.” NeurIPS’20

▪ Few-shot out-of-graph link prediction

▪ Extrapolate knowledge through the neighbors (one-hop subgraph) of the support set



Structure-based Enhancement on Graphs 

• Subgraph-level enhancement: Meta-tail2vec

37

Z. Liu, et al “Towards Locality-Aware Meta-Learning of Tail Node Embeddings on Networks.” CIKM’20

▪ Locality-aware tasks: support set sampled from the neighborhood subgraph of the query node 



Adaptation-based Enhancement on Graphs 

• Customization of a globally shared prior into a localized or 
specialized model for each task

38



Adaptation-based Enhancement on Graphs 

• Graph-wise adaptation: GFL 

39

H. Yao, et al. “Graph Few-Shot Learning via Knowledge Transfer.” AAAI’20

▪ Recognize the topological variances across different graphs

▪ Customize a global prior for each individual graph (class prototypes tailored to each graph)

▪ Apply gate function to the global prior



Adaptation-based Enhancement on Graphs 

• Graph-wise adaptation: MI-GNN 

40

Z. Wen, et al. “Meta-inductive node classification across graphs.” SIGIR’21

▪ Employ a Feature-wise Linear Modulation (FiLM) to modulate the global prior for each graph 



Adaptation-based Enhancement on Graphs 

• Task-wise adaptation: MetaTNE 

41

L. Lan, et al. “Node classification on graphs with few-shot novel labels via meta transformed network embedding.” NeurIPS’20

▪ Multi-label few-shot classification: same node could be associated with different labels in different tasks

▪ Adaptation for the node embeddings (the query set in each task)



Adaptation-based Enhancement on Graphs 

• Task-wise adaptation: AMM-GNN 

42

N. Wang, et al.. “Graph Few-shot Learning with Attribute Matching.” CIKM’20

▪ Customize a task-specific feature matrix for adaptation



Adaptation-based Enhancement on Graphs 

• Others: AS-MAML 

43

N. Ma, et al. “Adaptive-Step Graph Meta-Learner for Few-Shot Graph Classification.” CIKM’20

Embedding 
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LayersSupport
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Adaptation 
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Embedding 
Layers

Classifier 
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Step Controller

Adaptation 

Accuracy

Accuracy

BP BP

Accuracy

Step size T

Query Graphs

ANI, Loss 

Figure 2: Diagram of the AS-MAML framework ’s learning process in a single episode on the 2-way-1-shot graph classi ca-

tion task. The yel low arrows show meta-learner’s T step adaptations on support graphs. The blue dash arrows show T step

evaluations (Accuracies) on the query graphs. The orange dash arrows show the backpropagation (BP) according to T-th loss

on query graphs. The step control ler receives ANIs and classi cation losses on support graphs of each step. Af ter that, the

control ler outputs the adaptation step T. Final ly, the control ler receives accuracies on query graphs as rewards and updates

i ts own parameters.

loss is suboptimal to be viewed as rewards for overcoming over-

tting. Therefore, we adopt a novel step controller to accelerate

training and overcomeover tting. Our step controller isalso driven

by RL but learns the optimal adaptation step by using ANIs and

losses as inputs and classi cation accuracy as rewards. Figure 2

demonstrates the training process of our framework.

4.1 Graph Embedding Backbone

We explain our proposed framework with typical graph convolu-

tional modules and pooling modules as embedding backbone, due

to that novel graph convolutional modules or pooling modules are

out of concern for this paper. The rst step to represent a graph is

to embed the nodes it contains. We investigate several embedding

methods such as GCN, GAT, GraphSAGE and GIN. Here we focus

on GraphSAGE as following reasons: (1) GraphSAGE has more

exible aggregators in few-shot learning scenarios; (2) Errica et at.

[11] set GraphSAGE as a strong baseline when compared to GIN

for the graph classi cation task. Hence we use mean aggregator of

GraphSAGE as follows:

hl
v = σ

⇣
W ·mean

⇣(
hl −1

v

)
[

(
hl −1

u ,8u 2 N (v )
)⌘

, (1)

wherehl
v is the l -th layer representation of nodev ,σ is thesigmoid

function, W is the parameters and N (v ) contains the neighbor-

hoods of v . Please note that this mean aggregator just belongs to

the group of typical aggregators we use in experiments. We will

provide concrete analysis for other aggregators in Section 5 and

Section 6.4.

After that, we discuss existing pooling operations. Under the cir-

cumstances of few-shot learning, the meta-learner urgently needs

a exible pooling strategy with learning capability to strengthen its

generalization. Here, we focus on self-attention pooling (SAGPool)

[25] as our pooling layer thanks to its exible attention parameters.

The main step of SAGPool is to calculate the attention score matrix

of graph Gi as follows:

Si = σ

✓
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◆
, (2)

where the Si 2 Rn i ⇥1 indicates the self-attention score, ni is node

number of the graph. σ is the activation function (e.g., tanh), Ãi 2

Rn i ⇥n i is the adjacency matrix with self-connections, D̃i 2 Rn i ⇥n i

is the diagonal degree matrix of Ãi , Xi 2 Rn i ⇥d isn input features

with dimension d, and Θat t 2 Rd⇥1 is the learnable parameters

of pooling layer. Based on the attention score, we select top c <

ni nodes that have larger scores with keeping their origin edges

unchanged.

To get xed representation dimension for each graph, we need

Read-Out operation to form each graph embedding vector into

identical dimension. Following Zhang et al. [54], we use the con-

catenation of mean-pooling and max-pooling for each level of graph

embeddings of Gi as follows:

rl
i = R

⇣
Hl

i

⌘
= σ

*
.

,
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i

X

p=1

Hl
i (p, :)k

d
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+
/

-
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where rl
i 2 R2d is the l -th layer embedding, nl

i is the node number

in l -th layer, Hl
i denotes l -th layer hidden representation matrix , k

is concatenation operation, p and q are row number and column

number respectively,d is feature dimension, and σ is the activation

function (e.g., Recti ed Linear Unit, ReLU [8]).
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▪ Improve adaptation from an optimization standpoint

▪ Reinforcement learning-based controller to determine the optimal step size 

for the adaptation process 



Adaptation-based Enhancement on Graphs 

• Others: MetaDyGNN 

44

C. Yang, et al. “Few-shot Link Prediction in Dynamic Networks.” WSDM’22

▪ Adaptation for dynamic graphs: time- and node-wise  



Summary

• Existing research often enhances a standard meta-learner: structural augmentation or 
refining the adaptation process 

• Drawbacks:

➢Require abundant labels for a base set during the meta-training phase

➢Fail to leverage the vast amount of unlabeled data to learn a more comprehensive prior

➢Limited by the i.i.d. assumption in task distribution, and cannot handle different types of 

downstream tasks

45

Can we address a diverse range of few-shot tasks on graphs without an 

extensively annotated base set, while utilizing abundant unlabeled graphs? 



Outline

Time Topic Speaker/host

9.00am Opening Yuan Fang

9.05am Introduction Shirui Pan

9.15am Problems and Applications Yuan Fang

9.45am Meta-Learning Approaches Yuxia Wu

10.15am Q&A Yuxia Wu

10.30am Coffee break

11.00am Pre-training Approaches (Pre-LLM) Xingtong Yu

11.35am LLM Era Yuxia Wu

12.05am Hybrid Approaches Yuxia Wu

12.15am Future Research Avenues, Q&A Yuan Fang



Outline

Time Topic Speaker/host

9.00am Opening Yuan Fang

9.05am Introduction Shirui Pan

9.15am Problems and Applications Yuan Fang

9.45am Meta-Learning Approaches Yuxia Wu

10.15am Q&A Yuxia Wu

10.30am Coffee break

11.00am Pre-training Approaches (Pre-LLM) Xingtong Yu

11.35am LLM Era Yuxia Wu

12.05am Hybrid Approaches Yuxia Wu

12.15am Future Research Avenues, Q&A Yuan Fang



Pre-training on Graphs

• Pre-training stage utilizes self-supervised method

• Prior knowledge are then adapted to downstream tasks

48



Pre-training Strategies

• Graph pre-training strategies mainly fall into:

49

➢Contrastive strategies

➢Generative strategies



Contrastive Strategies

• Contrasting instances at various scales within a graph

50

Contrastive loss:

Pre-training data

Positive samples Negative samples

Target instance

➢Sample positive and negative instances 

➢Positive instances closer to the target

➢Negative instances further to the target



Generative Strategies

• Reconstruct parts of the graph

51

➢Structure reconstruction

- Entire graph structure

- Part of graph structure

➢Feature reconstruction

- Origin feature

- Latent embedding



Fine-tuning

• Prior knowledge are transferred to downstream tasks by 
initializing a downstream model with the pre-trained weights

52

➢Task-specific projection head

➢Update the parameters in

- Pretrained model 

- Task head

➢Objective gap between pretext and 

downstream tasks

➢Updating all parameters is inefficient



Prompt tuning

53



Prompt tuning

• Unified template 

• Prompt

54

➢Modify the original 

input/embedding for 

the pre-trained model 

     

➢Aligns the pretext and 

downstream losses



GraphPrompt

• Motivation

• Challenges

55

Liu, et al. “Graphprompt: Unifying pre-training and downstream tasks for graph neural networks.” WWW’23.

➢What is the unified task 

template?

➢Gap between graph pre-

training and downstream 

tasks

➢How to design task-specific 

prompts?



GraphPrompt

56

Liu, et al. “Graphprompt: Unifying pre-training and downstream tasks for graph neural networks.” WWW’23.

Pre-Training Objective

Link Prediction

Node Classification(NC)

Graph Classification(GC)

Unified task template

A Notation for NC and GC Prompt Design

class label

mean embedding of (sub)graphs



Generalized Graph Prompt

• Motivation

57

Yu, et al. “Generalized graph prompt: Toward a unification of pre-training and downstream tasks on graphs”. TKDE 2024.

➢Can more advanced pretext tasks be unified under the subgraph 

similarity calculation template?

➢How to utilize hierarchical knowledge across multiple layers of 

the pre-trained graph encoders



Generalized Graph Prompt

• Any standard contrastive pretext task on graphs can be unified 
under the loss:

58

Yu, et al. “Generalized graph prompt: Toward a unification of pre-training and downstream tasks on graphs”. TKDE 2024.



Generalized Graph Prompt

59

Yu, et al. “Generalized graph prompt: Toward a unification of pre-training and downstream tasks on graphs”. TKDE 2024.

Prompts

• Layer wise prompt design

Layer-wise modification Fusion



HGPrompt

• Motivation

60

Yu, et al. “HGPrompt: Bridging Homogeneous and Heterogeneous Graphs for Few-shot Prompt Learning.” AAAI’24.

Homogeneous graph Heterogeneous graph

➢How to unify homogeneous graphs and heterogeneous graphs?

➢How to transfer task-specific heterogeneous knowledge?



HGPrompt

61

Yu, et al. “HGPrompt: Bridging Homogeneous and Heterogeneous Graphs for Few-shot Prompt Learning.” AAAI’24.

Dual templates

Graph template

Task template Dual prompts

Feature prompt

Heterogeneity prompt

Dual templates Dual prompts

Feature prompt

Heterogeneity prompt



ProNoG

• Motivation

62

Yu, et al. “Non-homophilic graph pre-training and prompt learning.” SIGKDD’25.

Homophily graph Heterophily graph

➢Graphs exhibit different homophily 

ratio depending on nodes label

➢How to capture node specific 

homophily pattern?



ProNoG

63

Yu, et al. “Non-homophilic graph pre-training and prompt learning.” SIGKDD’25.

Contrastive pre-training method loss function Definition of homophily task 

Theorems Insights

For non-homophilic graphs, especially those with low 

homophily ratio, non-homophily tasks are a better choice 

compared to homophily tasks when optimizing the training loss.



Prompt tuningPrompt generation

ProNoG

64

Yu, et al. “Non-homophilic graph pre-training and prompt learning.” SIGKDD’25.



DyGPrompt

• Motivation

65

Yu, et al. “Node-Time Conditional Prompt Learning In Dynamic Graphs.” ICLR’25.

➢How to design bridge temporal variations 

across time and different  task objectives

➢How to capture evolving patterns 

across different nodes and time points



DyGPrompt

66

Yu, et al. “Node-Time Conditional Prompt Learning In Dynamic Graphs.” ICLR’25.

Dual prompts

Node prompt Time prompt

Dual condition prompts

Time conditioned node prompts Node conditioned time prompts



MultiGPrompt

• Motivation

67

Yu, et al. “MultiGPrompt for Multi-Task Pre-Training and Prompting on Graphs.” WWW’24.

➢How to leverage diverse pretext tasks for graph models in a 

synergistic manner?

➢How to transfer both task specific and global pre-trained 

knowledge to downstream tasks?



MultiGPrompt

68

Yu, et al. “MultiGPrompt for Multi-Task Pre-Training and Prompting on Graphs.” WWW’24.

Aggregate dual prompt 

Pre-Training Objective

Pretext tokens

Composed prompt

Open prompt

Add token to each layer of graph encoder

Overall embedding 

Graph encoder output embedding 

Multi-task pre-training

Prompt tuning

Add prompt to each layer of graph encoder



MDGPT & SAMGPT

• Motivation

69

Yu, et al. “Text-free multi-domain graph pre-training: Toward graph foundation models.” ArXiv’24.

Yu, et al. “SAMGPT: Text-free Graph Foundation Model for Multi-domain Pre-training and Cross-domain Adaptation.” WWW’25.

➢ How to align multi-domain 

graphs in the pre-training phase 

in both feature and structure level

➢ How to adapt multi-domain prior 

knowledge to downstream tasks in 

different domains?



MDGPT

70

Yu, et al. “Text-free multi-domain graph pre-training: Toward graph foundation models.” arXiv preprint.

Dimension alignment Semantic alignment

Multi-domain pre-training Downstream adaptation

Unifying promptDimension alignment Mixing prompt



SAMGPT

71

Yu, et al. “SAMGPT: Text-free Graph Foundation Model for Multi-domain Pre-training and Cross-domain Adaptation.” WWW’25.

Structural alignment

Multi-domain pre-training Downstream adaptation

Holistic prompt Specific prompt



MDGPT & SAMGPT

• For all baselines, adding more datasets tends to cause domain conflicts.

• In contrast, MDGPT & SAMGPT consistently perform better when more source 
domains are introduced.

72

Yu, et al. “Text-free multi-domain graph pre-training: Toward graph foundation models.” arXiv preprint.

Yu, et al. “SAMGPT: Text-free Graph Foundation Model for Multi-domain Pre-training and Cross-domain Adaptation.” WWW’25.



Summary

• Existing research often focus on text-free graphs,  fail to leverage the vast amount of 
textual data to learn a more comprehensive knowledge

• LLMs have achieved significant performance 

73

Can we leverage LLMs to integrate textual data and thereby improve the performance of 

graph few-shot learning?



Outline

Time Topic Speaker/host

9.00am Opening Yuan Fang

9.05am Introduction Shirui Pan

9.15am Problems and Applications Yuan Fang

9.45am Meta-Learning Approaches Yuxia Wu

10.15am Q&A Yuxia Wu

10.30am Coffee break

11.00am Pre-training Approaches (Pre-LLM) Xingtong Yu

11.35am LLM Era Yuxia Wu

12.05am Hybrid Approaches Yuxia Wu

12.15am Future Research Avenues, Q&A Yuan Fang



Graph + PLM

• Pre-training:

➢Contrastive pre-training 

➢Language modeling

• Adaptation:

➢Prompt-tuning

➢Parameter-effeicient fine-tuning (PEFT)

75



Graph + PLM: Pre-training

• MoleculeSTM: Contrastive pre-training

76

S. Liu, et al. "Multi-modal molecule structure–text model for text-based retrieval and editing." Nature Machine Intelligence 2023

Graph-Text contrastive learning: Graph encoder + Text encoder → projector layers



Graph + PLM: Pre-training

• G2P2: Contrastive pre-training

77

Z. Wen, et al. "Augmenting low-resource text classification with graph-grounded pre-training and prompting." SIGIR’23

Graph encoder + Text encoder →

Three contrastive loss:

• Text-Node 

• Text summary-Text

• Text summary-Node



Graph + PLM: Pre-training

• PATTON: Masked language modeling + Masked node prediction

78

B. Jin, et al. "PATTON : Language Model Pretraining on Text-Rich Networks." ACL’23

Two pretraining strategies



Graph + PLM: Pre-training

• GaLM: Graph-aware language model pre-training

79

H. Xie, et al. "Graph-aware language model pre-training on a large graph corpus can help multiple graph applications." KDD’23.

LLM-encoded node embeddings → Graph encoder 

Link prediction task→ Pre-train both the LLM and the graph encoder



Graph + PLM: Pre-training

• InstructGLM: Language model pre-training

80

R. Ye, et al. " Language is All a Graph Needs." EACL’24.

Natural language→ 

Describe graph structures 



Graph + PLM: Pre-training

• One for all: LLM + GNN pre-training

81

H. Liu, et al. "One for all: Towards training one graph model for all classification tasks." ICLR’24.

LLM: text/task embedding        GNN: prompted graph



Graph + PLM: Adaptation

• Prompt-tuning

• Parameter-effeicient fine-tuning (PEFT)

82



Graph + PLM: Prompt-Tuning

• G2P2
➢Discrete prompt-tuning: zero-shot

➢Trainable prompt-tuning: few-shot 

83

Z. Wen, et al. "Augmenting low-resource text classification with graph-grounded pre-training and prompting." SIGIR’23.

(a) Zero-shot (b) Few-shot



Graph + PLM: Prompt-Tuning

• One for all

84

H. Liu, et al. "One for all: Towards training one graph model for all classification tasks." ICLR’24.



Graph + PLM: PEFT

• MolCA

85

Z. Liu, et al. “MolCA: Molecular Graph-Language Modeling with Cross-Modal Projector and Uni-Modal Adapter.” EMNLP’23

Cross-Modal Projector: bridge the gap between graph structural and textual representations

Uni-Modal LoRA Adapter: efficient downstream adaptation 

Graph 
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Cross-Modal 
Projector

Language Model

Acetylsalicylic acid appears as 
odorless white crystals …

CC(=O)OC1=CC
=CC=C1C(=O)O 

Generate

Input

Figure 4: MolCA’spretrain stage 2

by molecule captioning.
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Pretrained 
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Uni-Modal Adapter: 
LoRA

W 2 Rd1× d2

B 2 Rd1 × r

A 2 Rr × d2

Figure5: MolCA’sfine-tunestage for molecule-to-text generation.

The example shows the prediction of amolecule’s IUPAC name.

Formally, consider a molecule-text pair (g, y )

and g’s SMILES repsentation s, The cross-modal

projector representations of g are denoted as

{ m k}
N q

k= 1. Wedefinep2(·) as the text distribution

parameterized by the frozen LM. We optimize the

cross-modal projector and the graph encoder by

minimizing the following loss function:

− logp2(y |{ m k }
N q

k= 1, s)

= −

LX

l= 1

logp2(yl |y1, ..., yl− 1, { m k }
N q

k= 1, s). (5)

3.3 Fine-tune Stage: Uni-Modal Adapter for

Efficient Downstream Adaptation

In this stage, we fine-tuneMolCA for downstream

generation tasks. As Figure 5 illustrates, we ap-

pend a text prompt of the task description after the

molecule representations. Then, weapply language

modeling loss to fine-tuneMolCA for generation

tasks, such asmolecule’s IUPAC name prediction.

Uni-Modal Adapter. In MolCA, the LM isac-

counted for a large portion of computation over-

head: it can have⇠1B parameters, while the cross-

modal projector and graph encoder only have a

total of ⇠0.1B parameters. Therefore, weemploy a

uni-modal adapter for theLM’sefficient adaptation

to downstream tasks. Specifically, weemploy the

LoRA (Hu et al., 2022) adapter due to its simple

implementation and promising performances (Liu

et al., 2022a). As shown in Figure 5, for selected

weight matrices (e.g., W 2 Rd1⇥d2 ) in the LM,

LoRA adds pairs of rank decomposition matrices

(e.g., BA, B 2 Rd1⇥r , A 2 Rr⇥d2 ) in parallel to

them. The original h = Wx layer is changed to:

h = Wx + BAx , (6)

where W is kept frozen and the newly added BA

is trained during adaptation. Given a small r ⌧

Subset Size Avg mol len Min text len Avg text len

Pretrain 298083 35 1 16
Train 12000 32 20 60
Valid 1000 32 20 61
Test 2000 31 20 60

Table 1: Statistics of the PubChem324k dataset. We

count the text length by splitting the text at spaces.

min(d1, d2), LoRA can effectively adapt the LM

to downstream tasks while requiring little memory

overhead for storing gradients.

4 Exper iments

4.1 Exper imental Setting

Here webriefly present theexperimental settings.

More details can be found in Appendix B.

PubChem324k Dataset. We collect PubChem-

324k – a dataset containing 324k molecule-text

pairs from thePubChem website1. Table1 presents

the dataset statistics. Notice that, the dataset in-

cludes many uninformative texts, such as “The

molecule is a peptide” . Therefore, we sample a

high-quality subset of 15k pairs with text longer

than 19 words for downstream tasks. This high-

quality subset is further randomly divided into

the train/valid/test sets. The remaining dataset,

which is more noisy, is used for pretraining. Ad-

ditionally, wefilter our pretrain subset to exclude

molecules from the valid/test sets of other down-

stream datasets, including CheBI-20 (Edwards

et al., 2022), PCDes (Zeng et al., 2022), and

MoMu (Su et al., 2022) datasets. The dataset after

filtering includes totally 313k molecule-text pairs.

Baselines. For generation tasks, we compare

MolCA with the following baselines: T5 (Raffel

et al., 2020), MolT5 (Edwards et al., 2022), and

MoMu (Su et al., 2022). For molecule-text retrieval,

1ht t ps: / / pubchem. ncbi . nl m. ni h. gov
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is trained during adaptation. Given a small r ⌧

Subset Size Avg mol len Min text len Avg text len

Pretrain 298083 35 1 16
Train 12000 32 20 60
Valid 1000 32 20 61
Test 2000 31 20 60

Table 1: Statistics of the PubChem324k dataset. We

count the text length by splitting the text at spaces.

min(d1, d2), LoRA can effectively adapt the LM

to downstream tasks while requiring little memory

overhead for storing gradients.

4 Exper iments

4.1 Exper imental Setting

Here webriefly present theexperimental settings.

More details can be found in Appendix B.

PubChem324k Dataset. Wecollect PubChem-

324k – a dataset containing 324k molecule-text

pairs from thePubChem website1. Table1 presents

the dataset statistics. Notice that, the dataset in-

cludes many uninformative texts, such as “The

molecule is a peptide” . Therefore, we sample a

high-quality subset of 15k pairs with text longer

than 19 words for downstream tasks. This high-

quality subset is further randomly divided into

the train/valid/test sets. The remaining dataset,

which is more noisy, is used for pretraining. Ad-
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Graph + PLM: PEFT

• GraphGPT: only fintune projector
➢Aligh graph to LLM

86

J. Tang, et al. "GraphGPT: Graph instruction tuning for large language models.” SIGIR’24.
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Figure 2: The overal l archi tecture of our proposed GraphGPT with graph instruction tuning paradigm.
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Figure 3: Work ow of text-structure al ignment.
information. This requires reordering the node text information

list based on the sequence of graph tokens, e ectively associating

each graph token with its relevant textual description.

Tuning Strategy.Tooptimizethetuning processe ciently,wepro-

pose a strategy that incorporates a Lightweight Al ignment Pro-

jector. During training, we keep the parameters of both the LLM

and the graph encoder xed, focusing solely on optimizing the pa-

rameters of theprojector 5P. After training, weassume that thepro-

jector has successfully learned to map the encoded graph represen-

tation to graph tokens, whiletheLLM excelsat aligning thesetokens

with diverse node text information. To align the graph tokens with

thelanguage tokens, weemploy aprojector 5P, which can beassim-

ple as a single linear layer. This projector establishes thecorrespon-

dence between the graph tokens and the language tokens. By re-

placing the indicator token <gr aph> in theoriginal nature language

token sequence, the aligned graph tokens create a modi ed token

sequence for the large language model. This modi ed sequence, de-

notedas{<gr aph_begi n>,<gr aph_t oken>1, · · · ,<gr aph_t oken>=,

<gr aph_end>}, corresponds to the number of nodes= in the graph

associated with the given prompt. Given that the graph matching

process isunsupervised, wehave theopportunity to leverage a vast

amount of unlabeled graph data from di erent domains, to enhance

the generalizability of the learned projector.

3.2.2 Task-Speci c Instruction Tuning. In the second stage,

wepropose task-speci c instruction tuning. Thisstep isdesigned to

customize the model’s reasoning behavior to meet the speci c con-

straints and requirements of di erent graph learning tasks, such as

nodeclassi cation or link prediction. By ne-tuning the LLM using

task-speci c graph instructions, we guide the model to generate

responses that are better suited for the particular graph learning

task at hand. This further improves the model’s adaptability and

performance in handling various graph learning tasks.

Instruction Design.Weadopt asimilar instruction template,which

consistsof threeparts. To generategraph information for each node,

we employ the same neighbor sampling approach used in the rst

stage. This approach ensures that relevant graph information is

captured, with each node acting as the central node. For the node

classi cation task, the human question instruction contains both

the indicator token <gr aph> and speci c text information about

the central node. This instruction prompts the language model to

predict the category of the central node based on both the graph

structuredata and theaccompanying text information. An example

of the instruction data for di erent tasks can be seen in Figure 4,

providing a visual representation of how the instruction is struc-

tured and presented to the language model.

Tuning Strategy. In the second stage of training, we utilize the

parameters of the structure-aware projector that were trained in

the rst stage as the initial state. This allows us to conduct instruc-

tion tuning speci cally for downstream tasks. During this training

process, we keep the parameters of the language model (LLM) and

graph encoder xed, focusing solely on optimizing the parameters

of theprojector from thepreviousstage. By doing so, weensurethat

the LLM further aligns with the requirements of downstream tasks,

enhancing its ability to comprehend and interpret graph structures.

After completing the two training stages as described above, we

have con dence that our GraphGPT has acquired the capability to

comprehend the given graph structure and perform downstream

tasks on the provided graph. The training process involving in-

struction tuning and the freezing of speci c model parameters has

re ned the model’s understanding of graph structures, enabling it

to e ectively tackle various tasks associated with the given graph.

3.3 Chain-of-Thought (CoT) Disti l lation

When faced with diverse graph data, language models may en-

counter new or unfamiliar patterns and structures. This distribu-

tion shift can pose challenges in generating accurate and coherent

responses, especially when thenumber of nodeclassesvariesacross

di erent types of graph data. To address this challenge and boost

accuracy in thepresence of distribution shift, it isessential to equip

our GraphGPT with step-by-step reasoning abilities. In this regard,

we propose utilizing the Chain-of-Thought (COT) technique [47],

which explicitly models the ow of thoughts and reasoning steps.

By incorporating COT, our language model improvesthecoherence

and consistency of generated text. It enables the model to follow

a logical progression of ideas, enhancing its ability to understand

and reason about the given graph data.
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train the l ightweight Translator module fol lowing a two-stage paradigm, with the al ignment data generated by our Producer.

2 METHODOLOGY

In this section, we rst present the notations and problem settings

used in our model named GraphTranslator, then introduce the ar-

chitecture of GraphTranslator along with the training strategies.

2.1 Notations and Problem Settings

Text-Attr ibuted Graphs We mainly focus on the ubiquitous

text-attributed graphs (TAGs), where nodes represent textual en-

tities such as documents or sentences, and edges denote the re-

lationships between them [10]. The representation learning on

TAGs has attracted attention for past years and is applied to broad

applications, ranging from text classi cation [11] to fake news de-

tection [18]. Formally, we de ne a TAG as G = V ,G, {BE}E2V ,

where V is a set of # nodes, and G 2 {0,1}# ⇥# is the adjacency

matrix of graph. For each nodeE, it is associated with a sequential

text feature, denoted asBE. Here we use a subset of # %nodes for

training GraphTranslator, denoted as V%⇢V .

Pre-de ned Tasks In the current landscape of the graph do-

main, numerous graph models are mainly designed and trained for

pre-de ned tasks, which refer to tasks that are explicitly de ned

and speci ed in advance. These tasks typically have well-de ned

input and output speci cations, along with clear evaluation metrics.

When training graph models, researchers or engineers will de ne

these tasks in advance and provide datasets associated with them

to train the models. This allows models to focus on solving speci c

problems and achieve high performance on these tasks, such as

node/graph classi cation[34], link prediction[36, 39], node cluster-

ing, etc. On the one hand, these well-formalized tasks provide a

benchmark for model evaluation, on the other hand, these tasks

often serve as the core function of real-world graph systems, re-

quiring high levels of e ciency and precision, such as daily update

in e-commerce system.

Open-ended Tasks On the contrary, open-ended tasks o er

greater exibility, characterized by theabsence of explicit task spec-

i cations or evaluation criteria. Models designed for open-ended

tasks often depend on autonomous learning and creative problem-

solving approaches. In real-world scenarios, new tasksoften emerge

with evolving business requirements, such asclassifying new labels

or tasksdriven entirely by human instructions. Thecomputer vision

community has also adopted the language instruction paradigm

for tasks like image-to-text generation [15, 16]. However, current

graph models are constrained by prede ned tasks and fail to adopt

to open-ended task customization guided by language instructions

like LLMs.

2.2 Overal l Architecture

Theprimary goal of our GraphTranslator is to align graph models to

LLMs, to leveragetheemergent capabilities of LLMsfor open-ended

tasks. Speci cally, GraphTranslator consists of four components:

(1) Frozen graph model (GM), is pre-trained on a large-scale graph,

such as e-commerce graphs with billions of nodes, yielding em-

beddings for all nodes that encoding thegraph’s information for

downstream tasks. We use thepre-trained GraphSAGE model as an

example in this work. (2) Frozen LLM, is trained on broad text cor-

pus, showcasing emergent abilities when thenumber of parameters

reach a certain scale. We employ the pre-trained ChatGLM2-6B for

demonstration. (3) Producer, is designed to construct the alignment



Summary

• Pre-training approaches employ self-supervised pretext tasks on unlabeled data 

• Pre-training approaches are more effective in scenarios where labeled data are 

limited to novel tasks without a pre-existing set of annotated tasks. 

• When a large annotated base set is available, meta-learning tends to perform better 

as it can leverage related meta-training tasks derived from the base set. 

• Parameter-efficient adaptation strategies, including prompt tuning, adapter tuning 

and LoRA, present a more promising direction for few-shot learning on graphs. 
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Hybrid Approaches

• Adopt pretext tasks to pre-train a 
graph encoder

• The pre-trained model is adapted 
in conjunction with meta-learning
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learning
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Unify node level and edge level 

tasks as graph level tasks

Prompt graph

Prompt modification

First pre-train a graph encoder, then apply 

meta-learning to the prompting phase
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• Integrate meta-learning with pre-trained GNNs in the black-box setting
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Figure 1: The step-by-step illustration of Meta-BP. (1) The black-box pre-trained GNN outputs node representations for sub-
sequent components while remaining inaccessible itself; (2) Graph meta-learner built on (1) exploits both graph pre-training
and meta-learning; (3) Graph meta-learner learns the representations Z to capture minimal sufficient information from the
pre-trained GNN tailored to the meta-tasks; (4) A subnetwork is derived from the graph meta-learner during meta-training to
improvegeneralization; (5) The subnetwork is anticipated to rapidly adapt to the meta-testing tasks.

once in advance, eliminating the need for adjacency mul-
tiplication during model training. Moreover, although lever-
aging thenoderepresentations output from pre-trained GNN
layers, themethod adheresto theblack-box setting, sincethe
internal parameters or internal updating mechanisms of the
pre-trained model remain inaccessible.

Then we adopt linear transformation layers to introduce
trainable parameters for fusing the node representation and
neighbor abstraction for node v as follows:

zv = σ([hv ||hN v
]W ) (2)

wherezv represents information extracted from thenodeand
its neighborhood for depicting nodev, W isarandomly ini-
tialized weight matrix, σ signifies the activation function,
and || denotesconcatenation operation. Theprediction based
on GML(·) goes as follows:

yv = f C (zv ) or Y = f C (Z) (3)

where f C (·) refers to astandard classifier, and Y denotes the
predicted node labels.

Extracting Minimal Sufficient Information

To prevent task-irrelevant knowledge in the pre-trained
GNN from interfering with downstream tasks, our objec-
tive is to extract relevant knowledge from the pre-trained
GNN for the downstream meta-tasks. To accomplish this,
the graph meta-learner is designed to extract the minimal
sufficient information tailored to few-shot node classifica-
tion tasks during meta-training, i.e., to extract relevant in-
formation preserved by input variable O about the output
variable Y . Thus, we utilize the prediction Y to implicitly
identify the relevant and irrelevant information within the
output O of the pre-trained GNN. It means that an optimal
representation mapping of O would capture therelevant fea-
tureswhilecompressing O by discarding the irrelevant parts

that do not contribute to the prediction Y . The graph meta-
learner is thus expected to learn node representations Z de-
fined in Eq. (1) as the optimal mapping of O w.r.t. the pre-
diction Y .

We adopt the information bottleneck principle (Tishby,
Pereira, and Bialek 2000; Tishby and Zaslavsky 2015) and
describe the relatedness between the output O and the node
representations Z using mutual information I (O; Z). To dis-
card task-irrelevant knowledge from pre-trained GNN, the
output Z from graph meta-learner is regarded as a minimal
knowledge (simplest mapping) from the pre-trained GNN,
yet sufficient to adapt well to meta-tasks. In other words, we
can minimize the mutual information I (O; Z) to obtain the
simplest mapping under the constraint on I (Z; Y ). Namely,
finding node representations Z with minimal sufficient in-
formation from the pre-trained GNN is formulated as the
minimization of the following Lagrangian:

L I = min
Z⇠GM L ( ·)

I (O; Z) − βI (Z; Y ) (4)

subject to the Markov chain Y ! O ! Z. Here, β is
a tradeoff parameter between the complexity of the repre-
sentations I (O; Z) and the amount of preserved relevant in-
formation I (Z; Y ). The preserved relevant information Z
from GML(·) contributes to diminishing the uncertainty in
Y : I (Z; Y ) = H (Y ) − H (Y |Z), where H denotes Shan-
non entropy. Then Eq. (4) can be rewritten as follows:

L I = min
Z⇠GM L ( ·)

I (O; Z) − βH (Y ) + βH (Y |Z) (5)

where H (Y ) is a constant and H (Y |Z) is regarded as a
cross-entropy lossdenoted asL C E for nodeclassification by
classifier f C (·). L I thus encourages the graph meta-learner
to leverage only relevant knowledge from fpr e that is tai-
lored for downstream nodeclassification. We then elaborate
on the estimation of I (O; Z).
Mutual Information Estimation. The computation of mu-
tual information struggles with scaling to large sample sizes
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Fig. 4: Taxonomy of few-shot learning techniques on graphs.

the context of graphs, only a small number of nodes, referred

to as head nodes, are incident to a large number of edges

(i.e., high-degree), while the majority of nodes, termed tail

nodes, have very few edges (i.e., low-degree) [132]. Thus, tail

nodes are surrounded by a small neighborhood with a scarcity

of neighbor information, limiting effective learning of their

representations. Formally, given a graph G = (V, E ), the set

of head nodes is denoted by Vhead, and the set of tail nodes

by Vtail , such that Vhead [ Vtail = V and Vhead \ Vtail = ; .

The separation of the two subsets is often determined by a

predefined threshold on the node degree [124], [132].

Long-tailed distributions are common in real-world net-

works. For example, in academic networks, a small number of

authors are highly prolific and linked to many papers, while

the majority have only a few connections to papers [123],

[124], [125], [126], [128], [129]. In social networks, a few

celebrities have a vast number of followers, while most users

have far fewer [123], [130], [124], [131], [132], [133], [126],

[127], [128]. In e-commerce and recommendation systems

[133], [126], [134], [128], [129], the disparity in the number

of connections across users or items is also evident. The

challenge of long-tailed distributions has also been studied in

other graph-centric applications, ranging from protein-protein

interaction [123] to air traffic control [130].

Cold-star t learning. The cold-start problem in graphs arises

when making predictions for new nodes, which often have

no or very few existing edges. Conventionally, models are

trained on existing graph structures where nodes have suffi-

cient connections to other nodes, leading to poor performance

for new nodes with few connections. This problem is prevalent

in social networks and e-commerce systems, where new nodes

are continually added. Specifically, in social networks, new

users often begin with few interactions with existing users or

content, motivating various solutions to the cold-start problem

[135], [136], [137], [25], [138], [139]. Similarly, on commerce

platforms, new users or items often lack interactions with other

users or items during their initial phase [135], [25], [140].
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Fig. 5: An illustration of meta-learning on graph.

IV. META-LEARNING TECHNIQUES ON GRAPHS

Meta-learning is an important family of few-shot learning

techniques, represented in the first branch of our taxonomy

in Fig. 4. Prevailing episodic meta-learning methods [142],

[32], [31] are designed to learn a prior from base classes,

which is transferable to new classes in downstream tasks.

These methods typically assume an abundance of labeled data

across a large number of base classes, while the downstream

new classes have few labeled samples, i.e., the setting of label

scarcity in new classes as discussed in Sect. III-A.

In this section, we first review standard meta-learning tech-

niques. We then categorize and discuss literature that enhances

the standard methods for few-shot learning on graphs.

A. Standard Meta-learning Techniques

In standard episodic meta-learning methods, such as Match-

ing Networks (MN) [142], Model-Agnostic Meta-Learning

(MAML) [31] and Prototpyical Networks (Protonets) [32],

we first construct a series of meta-training tasks from the

base classes to learn prior knowledge, which is then adapted

to downstream few-shot meta-testing tasks involving the new

classes. The concept is illustrated in Fig. 5, using few-shot

node classification on a graph as an example. In this scenario,

meta-training tasks are constructed using base classes with

ample labels, whereas a meta-testing task involves new classes

with only few-shot labels. Each task comprises a support set

and a query set, which function as training and testing data,

respectively, within each task [31]. The support set is always

labeled, whereas the query set is only labeled in meta-training

but is unlabeled for inference and prediction in meta-testing.

The prior is optimized on the meta-training tasks to enable

rapid, lightweight adaptation using the support set that can

minimize the loss on the query set. Hence, for the prior to be

transferable to meta-testing tasks, such meta-learners assume

that the meta-training and -testing tasks are sampled from an

i.i.d. task distribution.

Formally, in the meta-training phase, consider a set of

meta-training tasks Ttrain = { T 1
train, T 2

train, . . . , T n
train} . Each task

T i
train = (Si

train, Qi
train) 2 Ttrain consists of asupport set Si

train and

a query set Qi
train. Subsequently, the process of meta-learning,

also called learning-to-learn [31], involves optimizing the loss

over the set of meta-training tasks T i
train, as follows.

! ⇤= argmin
!

ET i
train2 Ttrain

L (T i
train; ! ), (4)

Constrain: 

Independent and Identically Distributed (i.i.d.) 

Structure-rich 

Structure-scarce 

Future direction:

Pre-training

Base tasks

Novel tasks

Adaptation

Bridge the gap between base and novel tasks
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Challenges: Finer-grained adaptation strategies to deal with potential variations among distant localities on a large graph. 
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where R is the 3D-coordinate matrix and T3D is the 3D transformation. In what follows, for notation
simplicity, we use x and y for the 2D and 3D graphs, i.e., x , g2D and y , g3D. Then the latent
representations are denoted as hx and hy .

3 GRAPHMVP: GRAPH MULTI-V IEW PRE-TRAINING

Our model, termed asGraph Multi-View Pre-training (GraphMVP), conductsself-supervised learning
(SSL) pre-training with 3D information. The 3D conformers encode rich information about the
molecule energy and spatial structure, which are complementary to the 2D topology. Thus, applying
SSL between the 2D and 3D views will provide abetter 2D representation, which implicitly embeds
the ensembles of energies and geometric information for molecules.

In the following, wefirst present an overview of GraphMVP, and then introduce two pretext tasks
specialized concerning 3D conformation structures. Finally, we summarize a broader graph SSL
family that prevails the 2D molecular graph representation learning with 3D geometry.

3.1 OVERVIEW OF GRAPHMVP

3
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Figure1: Overview of thepre-training stage in GraphMVP. Theblack dashed circles denotesubgraph
masking, and we mask the same region in the 2D and 3D graphs. Multiple viewsof the molecules
(herein: Halicin) are mapped to the representation space via 2D and 3D GNN models, where we
conduct GraphMVP for SSL pre-training, using both contrastiveand generative pretext tasks.

In general, GraphMVP exerts 2D topology and 3D geometry as two complementary views for each
molecule. By performing SSL between these views, it is expected to learn a 2D representation
enhanced with 3D conformation, which can better reflect certain molecular properties.

As generic SSL pre-training pipelines, GraphMVP has two stages: pre-training then fine-tuning. In
thepre-training stage, we conduct SSL via auxiliary tasks on data collections that provideboth 2D
and 3D molecular structures. During fine-tuning, the pre-trained 2D GNN models are subsequently
fine-tuned on specific downstream tasks, where only 2D molecular graphs are available.

At the SSL pre-training stage, wedesign two pretext tasks: one contrastiveand one generative. We
conjecture and then empirically prove that these two tasks are focusing on different learning aspects,
which are summarized into the following two points. (1) From the perspective of representation
learning, contrastive SSL utilizes inter-data knowledge and generative SSL utilizes intra-data
knowledge. For contrastive SSL, one key step is to obtain the negative view pairs for inter-data
contrasting; whilegenerativeSSL focuses on each data point itself, by reconstructing thekey features
at an intra-data level. (2) From theperspectiveof distribution learning, contrastiveSSL and generative
SSL are learning the data distribution from a local and global manner, respectively. Contrastive
SSL learns the distribution locally by contrasting thepairwise distance at an inter-data level. Thus,
with sufficient number of data points, the local contrastiveoperation can iteratively recover the data
distribution. Generative SSL, on the other hand, learns the global data density function directly.

Therefore, contrastiveand generativeSSL are essentially conducting representation and distribution
learning with different intuitions and disciplines, and we expect that combining both can lead to a
better representation. We later carry out an ablation study (Section 4.4) to verify this empirically. In

3

Figure1: An i l lustrativeexample of adynamic network with

3 snapshots (top), and two levels of general knowledge that

can be extracted for l ink prediction (bottom). The knowl-

edge can be divided into node-wise general knowledge (bot-

tom lef t), e.g., the law of tr iadic closure, and time interval-

wisegeneral knowledgeof aspeci cnode(bottom right), e.g.,

a node’s time-invariant preference.

the time-varying natureof node preferences and temporal depen-

dency of link formation in dynamic networks, which is critical

for dynamic link prediction [10]. Fig. 1 (a) presents an illustrative

example of the link formation process in a dynamic network. We

can nd that the centering nodeE’sneighbor preference changes

in di erent time intervals. If we simplify a dynamic network into

a static one, a lot of time-varying information will be discarded,

which makes it hard to learn valuable time-invariant knowledge for

future predictions. Hence, how to extract general knowledge in the

formation of dynamic links via meta-learning, is still a challenge

remaining unsolved. Also, it is not trivial to simply combine meta-

learning frameworks (e.g., MAML [5]) with existing dynamic GNNs

(e.g., TGAT [39]) whose sophisticated architectures cannot quickly

adapt to few-shot nodes in meta-learning. Therefore, how to tailor

dynamic GNNs for better generalization ability in meta-learning

settings is another challenge to beaddressed.

In this paper, we propose a novel model named MetaDyGNN,

which can take advantage of both meta-learning and graph neu-

ral network techniques, for few-shot link prediction in dynamic

networks. To address the rst challenge, we assume that there are

two levels of general knowledge that can be extracted via meta-

learning for dynamic link prediction, as shown in Fig 1. The rst

level in Fig. 1 (b) is the knowledge shared across di erent nodes,

e.g., thelaw of triadic closure[28] that two nodeswith shared neigh-

bors tend to get connected later. The second level in Fig. 1 (c) is the

knowledgeof aspeci c node’s time-invariant preference. To extract

the abovegeneral knowledge for fast adaption, we formalize each

task in our meta-learning framework as the temporal preference

learning of a single node, and propose a hierarchically adaptive

meta-learner with both time interval-wise adaption and node-wise

(or task-wise) adaption. As a result, during the meta-testing phase,

our model can quickly adapt to a new node (node-wise adaption)

for predicting its potential links in the future (time interval-wise

adaption), with only a few links of the new node. To address the

second challenge, wedesign a lightweight dynamic GNN module to

characterize the local structureof each node in meta-learning tasks.

In detail, our module employs attention mechanism to take advan-

tage of time encoding, node features and edge features for node

representation learning. Compared with TGAT [39], our module is

more e cient and e ective in the meta-learning framework. We

conduct experiments on three publicly available dynamic network

datasets. Experimental resultsshow that our proposed MetaDyGNN

signi cantly outperforms previous methods as well as the simple

combinations of meta-learning and GNNs.

To conclude, our contributions are as follows:

• We propose a novel method MetaDyGNN based on meta-

learning to address the few-shot link prediction problem in dy-

namic networks. To the best of our knowledge, MetaDyGNN is the

rst model speci cally designed for this important and realistic

scenario.

• The proposed model specializes meta-learning and dynamic

graph neural network techniques to extract hierarchical knowledge

for few-shot dynamic link prediction, and thus can go beyond a

simple combination of existing models.

• Experimental results on three publicly available dynamic net-

work datasets show that MetaDyGNN has a relative improvement

by up to 9.4%in terms of AUC over SOTA methods.

2 RELATED WORK

Generally, there are two lines of work related to the few-shot link

prediction problem in dynamic networks.

2.1 Meta-learning on Graphs

Meta-learning [36] aims at extracting general knowledge(or priors)

across di erent tasks, which can be quickly adapted to a new task

with only a few examples. For instance, MAML [5] is a popular

meta-learning framework for deep neural networks, which learned

the general knowledge across tasks as neural network parameter

initialization. At the meta-testing phase, MAML can ne-tune the

parameters with a small amount of training instances and thus

adapt to a new learning task e ciently.

Recently, meta-learning was integrated with graph neural net-

work models for few-shot predictions on graphs. Meta-GNN [41]

was the rst in this line of works, which employed MAML [5] for

few-shot node classi cation in a single graph. Chauhan et al. [3]

proposed a meta-learning framework based on super-class pro-

totype modeling, and can be combined with conventional GNN

models such as GCN [15] and GAT [35] for graph classi cation.

GFL [40] also targeted on categorizing graphs with node-level and

graph-level knowledge transfer. The above studies all focused on

classi cation problem.

In terms of few-shot link prediction, Meta-Graph [2] combined

meta-learning and GCN [15] for link prediction across multiple

graphs, which can not deal with link prediction problem in a single

graph. G-Meta [11] wasavery recent work based on local subgraph

modeling, which can be e ciently applied on either classi cation

or link prediction tasks. Besides, META-MGNN [7] tried to combine
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Figure 1: The comparison between (a) Zero-shot CLIP [55], (b) CLIP-Adapter [18] (c) TaskRes [82],
and (d) our proposed GraphAdapter. We can observe that previous works model task-specific
knowledge with asingle modality and lacks theexploitation of structure knowledge. In contrast, our
GraphAdapter aims to exploit the fused vision and language structure knowledge in data (i.e., the
inter-class relationships in dual modalities) for textual feature adapter with graph learning.

limited number of available samples. To mitigate this, efficient transfer learning (ETL) is proposed to
transfer the task-relevant knowledge from VLMs to downstream tasks by tuning a few parameters.

There are two popular ETL approaches for VLMs, including prompt tuning [89, 88, 44, 10, 62, 25,
42, 6], and adapter-style tuning [18, 52, 65, 90, 86, 85]. In particular, prompt tuning aims to adjust
the textual classifier adaptively toward downstream tasks by adding learnable prompts on the input
side, which outperforms zero-shot CLIP by a largemargin with few-shot samples, such asCoOp [89],
and CoCoOp [88]. Despite that, there is one limitation in the prompt tuning of VLMs [83, 82]: it
needs to pass the data through the textual encoder every iteration during training, yielding ahigher
demand for resources. In contrast, by using the textual encoder once only, adapter-style works tend
to refine the textual classifier or visual features with simple but efficient feature modulation for a
specific task on theoutput side. For instance, CLIP-Adapter [18] exploitsone simple bottleneck layer
to adjust the textual and visual embeddings of VLMs, which exceeds thezero-shot CLIP by 3.02%
on ImageNet with the one-shot setting. TaskRes [82] utilizes learnable task-specific parameters
asprior-independent residuals to adjust the textual embeddings. Another popular line [86, 85, 90]
seeks to augment the prior knowledge for downstream tasks with the cooperation of CLIP and other
pre-trained large vision or language models, such as DINO [5], and GPT [4].

However, there are two limitations in most adapter-style works on ETL: 1) only modeling task-
specific knowledge from a single modality perspective, such as CLIP-adapter [18], TaskRes [82] and
Tip-Adapter [86], where the adaptation is achieved based on the independent visual or textual feature.
2) overlooking theexplicit exploitation of thestructure knowledge (i.e., the relation between different
semantics/classes) in downstream tasks. A small number of samples in a low-data regime are hard
to guide the model to sufficiently excavate the structure knowledge in downstream tasks, leading
to the bias for partial attributes in the data, such as color and shape, and causing the sub-optimal
transferability and generalization capability [33, 49, 9, 45, 46]. It is vital to model the multi-modality
structure knowledge of downstream tasks for the tuning of VLMs in the low-data regime.

To mitigate the above limitations, we propose a brand-new adapter-style tuning strategy, dubbed
GraphAdapter, which aims to model task-specific knowledge for downstream tasks with the fused
textual and visual structure knowledge. We achieve this by solving two crucial challenges: 1)
how to model the structure knowledge (i.e., the inter-class relationship) for downstream tasks, and
2) how to learn the task-specific knowledge by introducing two-modality (i.e., visual and textual)
structure knowledge. Recently, graph learning [49, 7, 36] has shown the prevailing performance
on modeling data knowledge structure. However, the potential of graphs in improving theefficient
transfer learning of VLMs hasnot yet been fully explored. Inspired by this, for thefirst challenge,
we aim to exploit graph learning to model the structure knowledge for downstream tasks when
tuning VLMs. Consequently, we propose the dual knowledge graph, which is composed of a
textual sub-graph and avisual sub-graph. Particularly, to establish the relationship between different
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Figure 1: The pipeline of OFA. An input to the model contains a text-attributed graph and a task
description. Cross-domain texts in graphs and task descriptions can be co-embedded in the same
space by an LLM. OFA’s graph prompting paradigm converts the input with embedded features to
prompted graphs with aunified task representation, which allows adaptive downstream prediction.

networks (Yang et al., 2016; Hu et al., 2020), e-commerce networks (Shchur et al., 2018), knowl-
edgegraphs(Dettmers et al., 2018; Toutanova& Chen, 2015), and molecular graphs(Dwivedi et al.,
2020). Their raw formscontain attributesgenerated from isolated processes. For example, nodefea-
tures in molecular graphsareusually vectors whoseentries are indices of nominal features of atoms.
In contrast, node features in e-commerce networks could be Bag-of-Word vectors of item descrip-
tions. These features are so different in dimension, scale, and semantic meanings that it is almost
impossible to directly learn therepresentation of thesedatausing thesamemodel. Second, different
downstream tasks in thegraph domain attend to different parts of thegraph and require task-
specific knowledge and methodologies. Specifically, graph-related tasks can be roughly divided
into three classes: node-level, link-level, and graph-level. Even though Graph Neural Networks
(GNNs) achieved great success in all three task classes, the rationale for the success behind each
task class is different. For node-level tasks, proper smoothing of the node features leads to good
performance (Defferrard et al., 2016; Chien et al., 2021; He et al., 2021). However, for link-level
and graph-level tasks, encoding the local structure isvital to thesuccess, encouraging a line of work
that develops more expressive GNNs (Xu et al., 2018; Zhang & Li, 2021; Zhang & Chen, 2018).
Generally, a powerful model for node-level tasks may not work on link-level or graph-level tasks.
Consequently, current models are incompetent and infeasible to learn different tasks jointly. Third,
thedesign of the in-context learning or prompt is straightforward in natural language, where we can
simply add a description of the task or a few examples to the input. However, there is no existing
solution to add such context information to the graph generically. How to design a unified way to
perform cross-domain and in-context learning on the graph tasks is ambiguous.

To address these challenges, we propose One-for-All (OFA), a general solution for building and
training afoundation GNN model with in-context learning ability acrossdifferent domains. OFA has
three main unique features: (1) OFA uses text-attributed graphs (TAGs) to integrate graph datasets
from different domains into one large TAG dataset and leverages the power of LLMs to learn from
all domains jointly. We collect nine graph datasets commonly used in the community varying in
size, domains, and task types (see Table 1 for the full list). Then, we describe all nodes and edges
in the graphs using human-readable texts and embed the texts from different domains into the same
embedding space with a single LLM. (2) OFA proposes the nodes-of-interest (NOI) subgraph and
the NOI prompt node, which not only unify different types of graph tasks but also improve the
ability of the foundation model to learn the structural information in the graph. (3) OFA introduces
a carefully designed and widely applicable graph prompting paradigm (GPP) that inserts a prompt
graph into theoriginal input graph in a task-specific way. The nodes in theprompt graph contain all
related information about the downstream task (described by texts and encoded by the same LLM
encoder as the input graph). Then, themodified graph becomes the actual input to the foundation
graph model. Thus, themodel isadaptive to perform different tasks according to theprompt graphs.
Figure 1 illustrates the pipeline of OFA. After training, the users can descr ibe any graph with
natural texts and apply the OFA pipeline to predict possibly unseen classes.
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Figure 2: Overview of our proposed GCOPE method. The lef t part is our pretraining stage and the r ight part transferr ing stage.

through extensive experimentation, examining two main scenarios:

the transfer of knowledge from a single source dataset, as well as

from multiple source datasets.

Observations: Asdepicted in Figure1, transferring from asingle

source dataset does indeed negatively a ect the target task, con-

rming our analysis of the distinctiveness of two graph datasets.

In order to overcome this obstacle, it is necessary to expand the

scope of the source dataset so that it can o er valuable insights

for the downstream task. However, a brutal combination of source

datasets still failed to enhance the performance of the target task.

Wedetail this in section 4.2.

Further Analysis: The rst reason causing thisnegativetransfer

across domains is that the structural patterns are di erent, espe-

cially re ected in homophilic and heterophilic datasets. Graph data

is characterized by its complex network of connections, where

nodes are not isolated but part of an interconnected structure. The

relationships among nodes, represented by edges, facilitate the ow

of in uenceand information, making each nodeboth a product and

a contributor to its environment. This interconnectivity is central

to graph data, resulting in systems where the collective properties

surpass those of individual components. Nonetheless, this char-

acteristic presents challenges for machine learning models that

attempt to learn from multiple graph datasets simultaneously. Each

dataset isakin to itsown distinct ecosystem, governed by itsunique

topology and rules. Within a given graph, nodes and edges are at-

tuned to speci c patterns and linkages that are relevant within

that context. When merging di erent graphs for joint training, the

inherent disparity of each graph’s structure becomes a barrier, as

the datasets naturally exist in isolation from one another and thus

the information ow is blocked.

The second reason is the lack of feature alignment across these

datasets. Graph attributesareheterogeneousand context-dependent,

representing a wide range of abstract concepts and connections.

Unlike textual or visual data, which have a common reference

framework, graph attributes are highly varied and speci c to their

domain. Consequently, aligning features from di erent graphs is a

daunting task, as there is no straightforward method to reconcile

thedisparate languagesof each dataset into auni ed representation

for machine learning models to process.

Object i ves: In this paper, we focus on the above two challenges,

the disparity and isolation of graph datasets and the di culty in

aligning their diverse features. We denote our pretraining datasets

as comprising " graphs, represented as G(8) = (V (8) ,E (8) ),8 2

{1,2, · · · , " } ,whereV (8) = {E
(8)
1

,E
(8)
2

, · · · ,E
(8)

|V8|
} and E(8) = V (8)⇥

V (8) denote the sets of nodes and edges, respectively. Each G(8)

is associated with feature matrix - (8) 2 R|V (8) |⇥38 and adjacency

matrix (8) 2 R|V (8) |⇥|V (8) |. Our objective is to train a GNN⌘(·)
parameterized by ⇥, which iscapable of encoding knowledge trans-

ferable todownstream tasks. Thedownstream dataset isrepresented

as G(C) = (V (C) ,E (C) ) with the feature matrix - (C) and adajcency

matrix (C) . To address this question, we carefully design a gen-

eral pretraining scheme that is independent of datasets, network

architectures and downstream tasks.

3 METHOD

3.1 Overview of Our Framework
In this section, we introduce a cohesiveapproach that enables the

simultaneous pretraining of a graph model on multiple datasets.

We utilize established pretraining objectives, namely GraphCL [46]

and SimGRACE [43], to guide the learning process. Additionally,

we implement novel techniques speci cally designed to overcome

the challenges highlighted in Section 2. A visual representation of

our methodology is provided in Figure 2.

3.2 Al igning Graphs by Coordinators
Di erent graphs usually have di erent features and structural pat-

terns. Hereweproposeatwo-phasegraph alignment approach. The

rst step is to make the feature dimensions all the same in format.

Then we seek to further learn a latent data alignment strategy by

coordinators, which can reformulate graphs w.r.t their structural

patterns and semantic patterns.

3.2.1 FeatureProjection. During thepretraining phaseof our GNN

model, we rst present a projecting module to align feature dimen-

sion, which is described by:

-̃ (8) = Proj(- (8) ) 2 R|V (8) |⇥3P, (1)

whereProj (·) denotesacertain projection operation and3P denotes

the prede ned projected dimension. Without loss of generality, we

provide two widely used methods, singular value decomposition

(SVD) and attention mechanism, as two representative projection

operations in this paper. However, it is worth mentioning that the

mere projection of features onto a common plane does not su ce

to address thealignment challenge; additional alignment endeavors

are indispensable.
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